Main Article Content

Ahmet Ünver


Ultrasound, food processing, minimally food processing, sonication, cavitation


Nowadays, researchers are interested in minimal food processing techniques because of the increasing fresh or fresh-like food preferences of the consumers. Ultrasound is an acoustic energy but, its effect is a result of physical energy which is generated by the kinetic energy of the molecules in the applied medium. Its powerful effect, drawn the interest of the scientists to investigate on its applications in many areas. In food science, ultrasound has a wide range of applications. Microbial inactivation, drying, filtration, extraction, homogenization, cutting, emulsifying, cleaning, degassing and inactivation of enzymes are some of the examples of efficient ultrasound applications. The two important well-known benefits of using ultrasound are the reduction of the process duration and process cost. In this review, some ultrasound applications will be discussed in food science and technology.


Download data is not yet available.
Abstract 942 | PDF Downloads 747


1. Alliger, H. 1975. Ultrasonic Disruption. Am. Lab., 10:75-85.
2. Behrend, O., Schubert, H. 2001. Influence of hydrostatic pressure and gas content on continuous ultrasound emulsification, Ultrason. Sonochem., 8: 271– 276.
3. Brondum, J., Egebo, M., Agerskov, C., Busk, H. 1998. Online pork carcass grading with the autoform ultrasound system. Journal of Animal Science, 76, 1859–1868.
4. Boistier-Marquis, E., Lagsir-Oulahal, N., Callard, M. 1999. Applications des ultrasons de puissances en industries alimentaires, Ind. Aliment. Agric., 116: 23– 31.
5. Butz, P., Tauscher, B. 2002. Emerging technologies: chemical aspects. Food Research International, 35(2/3): 279–284.
6. Chemat, F., Huma, Z., Khan, M.K. 2011. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4): 813–835.
7. Chendke, P.K., Fogler, H.S. 1975. Macrosonics in industry: 4. Chemical processing, Ultrasonics, 13:31–37.
8. Denbow, N. 2001. Ultrasonic instrumentation in the food industry.Instrumentation and Sensors for the Food Industry (2nd Edition): Woodhead Publishing and CRC Press LCC, USA, 326-354.
9. Earnshaw, R.G., Appleyard, J., Hurst, R.M. 1995. Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure, Int. J. Food Microbiol., 28:197–219.
10. Gallego-Juarez, J.A. 1998. Some applications of air-borne power ultrasound to food processing, in: M.J.W. Povey, T.J. Mason (Eds.), Ultrasound in Food Processing, Blackie, Glasgow, pp. 127–143.
11. Garcia, M.L., Burgos, J., Sanz, B. and Ordonez, J.A. 1989. Effect of heat and ultrasonic waves on the survival of two strains of Bacillus subtilis. J. Appl. Bacterial., 67:619-628.
12. Grossner, M.T., Belovich, J.M., Feke, D.L. 2005. Transport analysis and model for the performance of an ultrasonically enhanced filtration process, Chem. Eng. Sci., 60:3233–3238.
13. Hatloe, J. 1995. Methods for pickling and/or marinating non-vegetable foodstuff raw material. Int. Pat. WO, 9518537.
14. Hausgerate, B.S. 1978. Process and device for treating foods using ultrasonic frequency energy, Ger. Pat., DE 2950-384.
15. Hughes, D. E., Nyborg, W. L. 1962. Cell disruption by ultrasound. Science. 38:108-114.
16. Kentish, S., Feng, H. 2014. Applications of Power Ultrasound in Food Processing. Annu. Rev. Food Sci. Technol., 5:263–284.
17. Laborde, J.L., Bouyer, C., Caltagirone, J.-P., Gerard, A. 1998. Acoustic bubble cavitation at low frequencies, Ultrasonics, 36:589–594.
18. Li, B., Sun, D.-W. 2002. Effect of power ultrasound on freezing rate during immersion freezing of potatoes, J. Food Eng., 55:277–282.
19. Lillard, H. S. 1993. Bactericidal effect of chlorine on attached salmonellae with and without sonification. J. Food Protect., 56(8):716-717.
20. Mason, T.J., Paniwnyk, L., Lorimer, J.P. 1996. The uses of ultrasound in food technology. Ultrasonics sonochemistry, 3(3):253-260.
21. Matsuura, K., Hirotsune, M., Nunokawa, Y. Satoh, M., Honda, K. 1994. Acceleration of cell growth and ester formation by ultrasonic wave irradiation, J. Ferment. Bioeng., 77:36–40.
22. McClements, D.J. 1995. Advances in the application of ultrasound in food analysis and processing, Trend Food Sci. Technol., 6:293–299.
23. Molins, C., Hogendoorn, E.A., Heusinkveld, H.A.G., Van, Z.P., Baumann, R.A. 1997. Microwave assisted solvent extraction (MASE) of organochlorine pesticides from soil samples, Int. J. Environ. Anal. Chem., 68:155–169.
24. Mongenot, N., Charrier, S. Chalier, P. 2000. Effect of ultrasound emulsification on cheese aroma encapsulation by carbohydrates, J. Agric. Food Chem., 48: 861–867.
25. Ohlsson, T., Bengtsson, N. 2002. Minimal processing of foods with non-thermal methods. Minimal processing technologies in the food industry., 34-60
26. Ordonez, J.A., Sanz, B., Hermandez, P.E. and Lopez-Lorenzo, P. 1984. A note on the effect of combined ultrasonic and heat treatments on the survival of thermoduric Streptococci. J. Appl. Bacterial., 56:175-177.
27. Pagan, R., Manas, P., Alvarez, I., Condon, S. 1999. Resistance of Listeria monocytogenes to ultrasonic waves under pressure at sublethal (manosonication) and lethal (manothermosonication) temperatures, Food Microbiol., 16:139–148.
28. Piyasena, P., Mohareb, E., McKellar, R.C. 2003. Inactivation of microbes using ultrasound: a review, International Journal of Food Microbiology, 87:207–216.
29. Pohlman, F.W., Dikeman, M.E., Zayas, J.F. 1997. The effect of low intensity ultrasound treatment on shear properties, color stability and shelf-life of vacuumpackaged beef semitendinosus and biceps femoris muscles, Meat Sci., 45:329–337.
30. Povey, M.J.W., Mason, T.J. 1998. Ultrasound in Food Processing, Springer Science & Business Media, Berlin.
31. Rahman, M.S. 1999. Light and sound in food preservation. In: M.S. Rahman (ed.) Handbook of Food Preservation. Marcel Dekker, New York, pp. 669–686.
32. Riera, E., Gallego-Juarez, J.A., Mason, T.J. 2006. Airborne ultrasound for the precipitation of smokes and powders and the destruction of foams. Ultrason. Sonochem., 13:107–116.
33. Rossing, T. 2007. Springer Handbook of Acoustics. Springer. pp. 747-748. ISBN 978-0387304465.
34. Sala, F.J., Burgos, J., Condon, P., Lopez, P. Raso, J. 1995. Effect of heat and ultrasound on microorganisms and enzymes, in: G. W Gould (Ed.), New Methods in Food Preservation, Blackies.
35. Schneider, Y. Zahn, S. Rohm, H. 2008. Power requirements of the high frequency generator in ultrasonic cutting of foods, J. Food Eng. 86:61–67.
36. Schneider, Y. Zahn, S. Schindler, C. Rohm, H. 2009. Ultrasonic excitation affects friction interactions between food materials and cutting tools, Ultrasonics, 49:588–593.
37. Shoh, A. 1975. Industrial Applications of Ultrasound-A Review I. High-Power Ultrasound. IEEE Transactions On Sonics and Ultrasonics, 22(2): 60-71.
38. Suslick, K.S., Grinstaff, M.W., Kolbeck, K.J., Wong, M. 1994. Characterization of sonochemically prepared proteinaceous microspheres. Ultrason. Sonochem. 1:65–68.
39. Tervo, J.T., Mettin, R., Lauterborn, W. 2006. Bubble cluster dynamics in acoustic cavitation, Acta Acust. Acust., 92:178–180.
40. Vercet, A., Lopez, P., Burgos, J. 1999. Inactivation of heat resistant pectinmethylesterase from orange by manothermosonication, J. Agric. Food Chem., 47:432–437.
41. Vilkhu, K., Mawson, R., Simons, L., Bates, D. 2008. Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innov. Food Sci. Emerg. Technol., 9:161–169.
42. Wrigley, D.M., Llorca, N.G. 1992. Decrease of Salmonella typhimurium in skim milk and egg by heat and ultrasonic wave treatment. J. Food Protect., 55(9):678-680.
43. Wu, H., Hulbert, G.J., Mount, J.R. 2000. Effects of ultrasound on milk homogenization and fermentation with yogurt starter, Innov. Food Sci. Emerg. Technol., 1:211–218.
44. Zeuthen, P., Ohlsson, T., Bengtsson, N. 2002. Safety criteria for minimally processed foods. Minimal processing technologies in the food industry., 196-218.
45. Zuniga, R.N., Kulozik, U., Aguilera, J.M. 2011. Ultrasonic generation of aerated gelatin gels stabilized by whey protein beta-lactoglobulin. Food Hydrocoll., 25:958–967.