ENHANCE PREDICTION PERFORMANCE THROUGH CONTINUOUS MONITORING OF WIND TURBINE

Randhir Kumar¹
Bengal College Of Engineering & Technology, Durgapur, W.B., India

Raju Prajapati²
University Of Engineering & Management, Kolkata, W.B., India

Sudhir Kumar saurav³
Radharaman Engineering College, Bhopal, M.P., India

email: randhir1849@gmail.com

Article History: Submitted on 10th September, Revised on 08th November, Published on 15th January 2017

Abstract: India lost first place in worldwide ranking on total installed wind capacity to china. Due to some issues like, grid issue, unavailability of infrastructure, monitoring wind turbine, offshore wind related R & D activities in the country, etc. This makes attributed to the slower pace to addition of wind power capacity; due to unavailability of on-shore wind sites with sufficiently high wind velocity is expected to take centre stage in the next few years. Low wind velocity makes the investment unattractive to developers. In current situation, monitoring and R & D is an investment option. Which has already seen favourable response in a country like china Germany, Denmark would begins in India. This analyses the present situation of wind energy farm at District Devas, Madhya Pradesh and investigates the possibilities of monitor the wind turbine to enhance the performance. In this paper, wind speed, peak speed, standard deviation, wind power density is to estimaed monthly at different altitude. Monitor capacity factor, energy generated through wind turbine, X-chart and R-chart drawn, maintenance and environmental impact have been analyzed.

Keyword. Wind Velocity; Air Density; Wind Power; Standard Deviation; Monitoring; Prediction Performance; Capacity Factor; etc.

INTRODUCTION

Earth equatorial regions receiving more solar energy than its polar regions and this sets up large scale convection current its result wind generated. It is estimated that about 1% of incoming solar radiation is converted into wind energy which is can fulfil our daily to present world need [1]. Due to rise in fossil fuel cost and pollution in environment has led to the world’s interest towards renewable energy sources. Wind is commercially and operationally the most viable renewable energy resource and it is emerging as one of the great renewable energy source. Wind energy can hold the promise of meeting energy demand by the direct grid connected modes as well as it can stand alone and remote applications. India has a good wind potential throughout the country. Winds in India are influenced by the strong south-west summer monsoon, which begins in May–June, Due to cool, humid air from Indian Ocean and Bay of Bengal moves towards the land and the weaker north-east winter monsoon, which begins in October, when cool dry air moves towards the ocean. Winds are uniformly strong in India in the period of March–August, except the eastern coastal area. During the period from November to March winds are relatively weak in India, but in the coastline of the state of Tamil Nadu higher wind speed is available during a part of this period. In our country Ministry of New and Renewable Energy (MNRE) is the ministry of Indian Government for all matters relating to new and renewable energy [2].

WIND ENERGY SCENARIO

WORLD WIDE WIND ENERGY STATICS

According to WWEA the worldwide wind capacity reached 392’927 MW by the end of June 2015, out of which 21’678 MW were added in the first six months of 2015. This increase is substantially higher than in the first half of 2014 and 2013, when 17.6 GW respectively 13.9 GW were added. All wind turbines installed worldwide by mid-2015 can generate 4 % of the world’s electricity demand.

The global wind capacity grew by 5.8% within six months (after 5.6 % in the same period in 2014 and 4.9 % in 2013) and by 16.8 % on an annual basis (mid-2015 compared with mid-2014). In comparison, the annual growth rate in 2014 was 16.5 % lower.
Figure 1. Total installed capacity in the world 2011-2015.

TOP TEN WIND MARKET: CHINA, USA, GERMANY, SPAIN AND INDIA CONTINUE TO LEAD

In 2015 annual installations crossed the 60 GW mark and more than 63 GW of new wind power capacity was brought on line. The last record was set in 2014 when over 51.7 GW of new capacity was installed globally. 2015 figures were up 4% from 2014’s investment and beating the previous record set in 2011 by 3%. The new global total for wind power at the end of 2015 was 432.9 GW, representing cumulative market growth of more than 17%. This growth was powered by an astonishing new installations figure of 30,753 MW in China; the global wind power industry installed 63,467 MW in 2015, representing annual market growth of 22%. By the end of June 2015 last ten countries had more than 10,000 MW of installed capacity including China (124,710 MW), the US (67,870 MW), Germany (42,370 MW), India (23,762 MW), Spain (22,987 MW), UK (13,313 MW), Canada (10,204 MW), France (9,819 MW), Italy (8,787 MW) and Brazil (6,800 MW). [10]

Table 1. World wise wind power installed capacity by the end of June 2015

<table>
<thead>
<tr>
<th>Position</th>
<th>Country/Region</th>
<th>Total capacity June 2015</th>
<th>Added capacity H1 2015</th>
<th>Total capacity end 2014</th>
<th>Added capacity H1 2014</th>
<th>Total capacity end 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>China</td>
<td>124,710</td>
<td>10,101</td>
<td>134,813</td>
<td>9,149</td>
<td>144,002</td>
</tr>
<tr>
<td>2</td>
<td>United States</td>
<td>67,870</td>
<td>1,994</td>
<td>69,864</td>
<td>985</td>
<td>74,719</td>
</tr>
<tr>
<td>3</td>
<td>Germany</td>
<td>42,370</td>
<td>1,955</td>
<td>44,325</td>
<td>2,013</td>
<td>47,038</td>
</tr>
<tr>
<td>4</td>
<td>India*</td>
<td>23,762</td>
<td>1,927</td>
<td>25,689</td>
<td>2,465</td>
<td>28,054</td>
</tr>
<tr>
<td>5</td>
<td>Spain</td>
<td>22,987</td>
<td>0</td>
<td>22,987</td>
<td>0</td>
<td>22,987</td>
</tr>
<tr>
<td>6</td>
<td>United Kingdom</td>
<td>13,313</td>
<td>1,072</td>
<td>14,385</td>
<td>1,180</td>
<td>16,564</td>
</tr>
<tr>
<td>7</td>
<td>Canada</td>
<td>10,204</td>
<td>510</td>
<td>9,694</td>
<td>723</td>
<td>10,337</td>
</tr>
<tr>
<td>8</td>
<td>France</td>
<td>9,819</td>
<td>523</td>
<td>9,342</td>
<td>535</td>
<td>9,877</td>
</tr>
<tr>
<td>9</td>
<td>Italy</td>
<td>8,787</td>
<td>124</td>
<td>8,911</td>
<td>30</td>
<td>8,911</td>
</tr>
<tr>
<td>10</td>
<td>Brazil</td>
<td>6,800</td>
<td>838</td>
<td>7,638</td>
<td>337</td>
<td>8,006</td>
</tr>
<tr>
<td>11</td>
<td>Sweden</td>
<td>5,582</td>
<td>157</td>
<td>5,739</td>
<td>354</td>
<td>6,093</td>
</tr>
<tr>
<td>12</td>
<td>Denmark</td>
<td>4,995</td>
<td>76</td>
<td>4,061</td>
<td>83</td>
<td>4,979</td>
</tr>
<tr>
<td>13</td>
<td>Portugal*</td>
<td>4,953</td>
<td>0</td>
<td>4,953</td>
<td>105</td>
<td>4,953</td>
</tr>
<tr>
<td>14</td>
<td>Turkey</td>
<td>4,393</td>
<td>431</td>
<td>4,824</td>
<td>466</td>
<td>5,290</td>
</tr>
<tr>
<td>15</td>
<td>Poland</td>
<td>4,117</td>
<td>283</td>
<td>4,394</td>
<td>337</td>
<td>4,731</td>
</tr>
<tr>
<td>16</td>
<td>Australia</td>
<td>4,006</td>
<td>200</td>
<td>3,806</td>
<td>699</td>
<td>3,908</td>
</tr>
<tr>
<td>Rest of the World</td>
<td>34,600</td>
<td>2,400</td>
<td>37,010</td>
<td>1576</td>
<td>28,493</td>
<td>28,493</td>
</tr>
<tr>
<td>Total</td>
<td>392,927</td>
<td>21,678</td>
<td>371,374</td>
<td>17,613</td>
<td>389,011</td>
<td>399,681</td>
</tr>
</tbody>
</table>

* by the end of March 2015
** Includes all installed wind capacity, connected and not-connected to the grid.

GENERAL SITUATION SMALL WIND WORLD MARKET

The IEC, defines SWTs in standard IEC 61400-2 as having a rotor swept area of less than 200 m², rated power of approximately 50 kW generating at a voltage below 1’000 V AC or 1’500 V DC. As of the end of 2014, a cumulative total of at least 945’000 small wind turbines were installed all over the world. This is an increase of 8.3% (7.4% in 2013) compared with the previous year, when 872’000 units were registered.

The recorded small wind capacity installed worldwide has more than 830MW as of the end of 2014. This is a growth of 10.9% compared with 2013, when 749 MW registered. In 2012, 678 MW were installed. China continues clearly to be the market leader in terms of installed units: 64’000 units were added in 2014, 9’000
more than in 2013, reaching 689’000 units installed by the end of 2014. The booming market of the recent years, Italy, grew by 71% reaching 1’610 units by the end of 2014.

Figure 2. Growth rate small wind world market

NEW WIND WORLD MARKET GROWTH RATES

“The world market for wind power is booming like never before, and we expect new record installations for the total year 2015. The main markets are still China – with an astonishing growth of more than 10 GW within six months – USA, Germany and India. Brazil showed the highest growth rate of all major markets, the country has increased its wind power capacity by 14 % since the beginning of 2015.

The wind industry globally is today driven by a large variety of shareholders and stakeholders, from small and medium sized enterprises, large industries, and energy cooperatives to environmental groups. For the future success, it will be crucial to continue and rather increase this variety.”

Table 2. New wind world market growth rate

<table>
<thead>
<tr>
<th>Country</th>
<th>Brazil</th>
<th>Turkey</th>
<th>China</th>
<th>Poland</th>
<th>UK</th>
<th>India</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth (%)</td>
<td>14.0</td>
<td>11.4</td>
<td>8.6</td>
<td>7.4</td>
<td>7.0</td>
<td>5.7</td>
</tr>
</tbody>
</table>

WIND ENERGY STATISTICS IN INDIA

India continues to be the second largest wind market in Asia, and in 2015 passed Spain to attain 4th place in terms of cumulative installations. The Indian government has committed to a target of 175 GW of renewable by 2022, including 100 GW of solar capacity and 60 GW of cumulative wind power capacity [10].

The Indian wind energy sector has an installed capacity of 23,439.26 MW (as on March 31, 2015). In terms of wind power installed capacity, India is ranked 5th in the World. In 2009-10 India growth rate was highest among other top 4 countries. Tamil Nadu wind power capacity is around 29%, installed capacity 7456 MW, which is nearly 15% capacity utilization factor. As 31 march 2015 the installed capacity of wind power in India as given below in table.

Table 3. State-wise Wind Power Installed Capacity In India

<table>
<thead>
<tr>
<th>State</th>
<th>Total Capacity (MW) till 31.03.2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh</td>
<td>1038.15</td>
</tr>
<tr>
<td>Gujarat</td>
<td>3642.53</td>
</tr>
<tr>
<td>Karnataka</td>
<td>2639.45</td>
</tr>
<tr>
<td>Kerala</td>
<td>35.1</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>876.7</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>4437.9</td>
</tr>
<tr>
<td>Rajasthan</td>
<td>3308.15</td>
</tr>
</tbody>
</table>
TECHNOLOGY OPTIONS

Wind energy development has by nature, is a merger of several inter-disciplinary subjects starting with meteorology, environment, mechanical composites, electrical systems and electronic controls along with the civil engineering requirements for the foundation and the tower structure.

Here, the Rotor which converts the kinetic energy in wind to mechanical energy has a possible efficiency level of 45-55%. Theoretically, it can go up to 59% which is known as BETZ’s limit and through a system of gears converts the mechanical energy to electrical energy where the high level of efficiency has been established in the industry to the tune of 90-95%. The variable speed rotor is capable of capturing about 15 to 20% more energy from the turbulent wind. The modern machines manufactured in India with foreign collaboration have capacities more than 1 MW and they are highly suited for a tropical Country like India. [8]

THEORETICAL ANALYSIS

The monthly mean of wind speed values and their standard deviations were calculated from the time series data using the following equations:

\[
v_{m} = \frac{1}{N} \sum_{i=1}^{N} v_i^n \left(\frac{\sum_{i=1}^{N} f_i^n v_i^n}{\sum_{i=1}^{N} f_i v_i^n} \right)^{\frac{1}{n}} \]

The standard deviation of wind speed distributions are calculated from the following equation:

\[
\sigma = \sqrt{n} \frac{\sum_{i=1}^{N} f_i (v_i - v_m)^2}{\sum_{i=1}^{N} f_i v_i^n - v_m^2} \]

Where:

- \(N\) is the number of hours in the considered period of time.
- ‘\(v_m\)’ is the mean wind speed (m/s) and the observation values \(v_i\).
- \(\sigma\) is the standard deviation.

Alternatively, the mean wind speed can be determined from:

\[
v_m = \frac{1}{n} \sum_{i=1}^{N} f_i (v_i - v_m)^2 \]

if the probability density function of the Weibull distribution is known.

POWER DENSITY DISTRIBUTIONS AND MEAN POWER DENSITY

It is well known that the power of the wind that flows at speed \(v\) through a blade sweep area \(A\) increases as the cube of its velocity and is given by:

\[
P = \frac{1}{2} \rho A v^2 P = \frac{1}{2} \rho A v^2 \]

Where: \(\rho\) is the standard air density. A typical value used in all the literature consulted is average air density (1.225 kg/m³), corresponding to standard conditions (sea level, 150 C).

The mean wind power density can be calculated directly from the following equation if the mean value of \((v^3)\) is already known:

\[
P_m (V) = \left(\frac{1}{2} \rho A \frac{1}{n} \sum_{i=1}^{N} f_i (v_i - v_m)^2 \right)^{\frac{1}{3}} \]

From Eq. (3), the mean value of \((v^3)\), can be determined as:

\[
(v^3)_m = \int_0^v v^3 f (v) dv v^3_m = \int_0^v v^3 f (v) dv \]

Integrating Eq.(6) the following is obtained for the Weibull function:
\[
\left(\frac{v^3}{m} \right) = \frac{\Gamma \left(\frac{1 + \frac{3}{k}}{k} \right)}{\Gamma \left(\frac{1}{k} \right)} \left(\frac{v_m}{m} \right)^{\frac{3}{k}} = \frac{\Gamma \left(\frac{1 + \frac{3}{k}}{k} \right)}{\Gamma \left(\frac{1}{k} \right)} \left(v_m \right)^{\frac{3}{k}}
\]
(7)

Where:

- \(k \) is the Weibull shape factor,
- \(\Gamma \) is the gamma function.

The monthly or annual wind power density per unit area of a site based on a Weibull

\[
P_w = \frac{1}{2} \rho c^3 \Gamma \left(1 + \frac{3}{k} \right) \frac{v_m}{m} = \frac{1}{2} \rho c^3 \Gamma \left(1 + \frac{3}{k} \right)
\]
(8)

Where:

- \(c \) is the Weibull scale factor (m/s).

The two significant parameters \(k \) and \(c \) are closely related to the mean value of the wind speed \(v_m \).

\[
v_m = c \Gamma \left(1 + \frac{1}{k} \right) \frac{v_m}{m} = c \Gamma \left(1 + \frac{1}{k} \right)
\]
(9)

Wind power density.

It is well known that the power of the wind that flows at speed \(V \) through a blade sweep area \(A \) increases as the cubic of its velocity and is given below

![Figure 3. Variation of Air Density and Specific Volume with Altitude](image)

ANALYSIS OF WIND POWER DENSITY

CALCULATION OF WIND ENERGY AND WIND POWER DENSITY

Calculating the energy (and later power) available in the wind relies on knowledge of basic and the physics behind kinetic energy. The kinetic energy (KE) of an object (or collection of objects) with total mass \(M \) and velocity \(V \) is given by the expression:

\[
KE = \frac{1}{2} M V^2
\]
(10)

Now, for purposes of finding the kinetic energy of moving air molecules (i.e.: wind), one has a large air parcel with the shape of a huge hockey puck, it has the geometry of a collection of air molecules passing through the plane of a wind turbine blades (which sweep out a cross sectional area \(A \)), with thickness \(D \) passing through the plane for a given time. The volume (Vol) of this parcel is determined by the parcel's area multiplied by its thickness:

\[
Vol = A \times D
\]
(11)
Let ρ represent the density of the air in this parcel. Note that density is mass per volume and is expressed as: $\rho = \frac{M}{Vol}$ (12)

and a little algebra gives: $M = \rho \times Vol$

If a time T is required for this parcel (of thickness D) to move through the plane of the wind turbine blades, then the parcel’s velocity can be expressed as $V = \frac{D}{T}$, and a little algebra gives $D = V \times T$.

Let’s make some substitutions in expression no. 1 ($KE = \frac{1}{2} \times M \times V^2$)

Substitute value for M ($= \rho \times Vol$) to obtain: $KE = \frac{1}{2} \times (\rho \times Vol) \times V^2$

And Vol can be replaced by $A \times D$ to give: $KE = \frac{1}{2} \times (\rho \times A \times D) \times V^2$

And D can be replaced by $V \times T$ to give: $KE = \frac{1}{2} \times (\rho \times A \times V \times T) \times V^2$

Now, power is just energy divided by time, so the power available from our air parcel can be expressed as:

$$P = \frac{KE}{T} = \frac{\frac{1}{2} \times (\rho \times A \times T)}{T} = \frac{1}{2} \times \rho \times A$$

And if we divide P by the cross-sectional area (A) of the parcel, then we are get with the expression:

$$\frac{P}{A} = \frac{1}{2} \times \rho \times m^3$$ (13)

Note two important things about this expression: one is that the power is proportional to the cube of the wind speed. The other is that by dividing power by the area, we have an expression on the right that is independent of the size of a wind turbine rotor. In other words, P/A only depends on (1) the density of the air and (2) the wind speed. In fact, there is no dependence on size, efficiency or other characteristics of wind turbines when determining P/A. We find the term P/A is called the "Wind Power Density" (WPD)

VARIATION OF WIND SPEED AND AIR DENSITY WITH ALTITUDE

In real measurement, the wind speed tends to increase with height in most locations and depends on atmospheric mixing and terrain roughness. Therefore, to determine the total wind energy potential, the measured surface wind speed must be modified for an height different from the normalized height (i.e. 10 m) for this reason the following equation was used.

$$v = v_i \left(\frac{z_i}{Z}\right)^m \quad v = v_i \left(\frac{z_i}{Z}\right)^m$$ (14)

Where:

v_i is the wind speed at normalized height, (m/s)

z_i is the normalized height, m

Z is the turbine height, m

The exponent m depends on factors such as surface roughness and atmospheric stability. Numerically, generally it lies in the range of 0.05–0.5, with the most frequently adopted value being 0.14 (widely applicable to low surfaces and well exposed sites).

$$m = \frac{\ln(v_i/v_f)\ln(v_i/v_r)}{\ln(z_i/z_f)\ln(z_i/z_r)}$$ (15)

Average air density at mean sea level is 1.225 kg/m3 density of air above mean sea level can be determine by following exponential equation:

$$\rho = \rho_0 \exp(-0.297h/3048)$$ (16)

Where

ρ is density of air at h meter height from mean sea level & ρ_0 is the air density at mean sea level.

RESULT AND DISCUSSION

<table>
<thead>
<tr>
<th>Month</th>
<th>Monthly mean wind</th>
<th>Monthly standard</th>
<th>Hourly max wind speed</th>
<th>Peak speed (Km/h)</th>
</tr>
</thead>
</table>

Table 4. Summary of Wind Data Jamgodrani Hills (2011)
<table>
<thead>
<tr>
<th>Altitudes</th>
<th>speed (Km/h)</th>
<th>deviation (Km/h)</th>
<th>(Km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 m</td>
<td>20 m</td>
<td>10 m</td>
</tr>
<tr>
<td>Jan</td>
<td>11.52</td>
<td>13.25</td>
<td>1.16</td>
</tr>
<tr>
<td>Feb</td>
<td>13.42</td>
<td>15.52</td>
<td>1.70</td>
</tr>
<tr>
<td>Mar</td>
<td>15.05</td>
<td>17.50</td>
<td>1.05</td>
</tr>
<tr>
<td>Apr</td>
<td>17.30</td>
<td>20.36</td>
<td>1.86</td>
</tr>
<tr>
<td>May</td>
<td>21.19</td>
<td>24.49</td>
<td>2.31</td>
</tr>
<tr>
<td>Jun</td>
<td>21.37</td>
<td>24.79</td>
<td>1.11</td>
</tr>
<tr>
<td>Jul</td>
<td>21.29</td>
<td>24.56</td>
<td>1.66</td>
</tr>
<tr>
<td>Aug</td>
<td>18.32</td>
<td>21.73</td>
<td>2.05</td>
</tr>
<tr>
<td>Sep</td>
<td>15.02</td>
<td>18.24</td>
<td>1.09</td>
</tr>
<tr>
<td>Oct</td>
<td>11.50</td>
<td>13.17</td>
<td>1.03</td>
</tr>
<tr>
<td>Nov</td>
<td>11.21</td>
<td>12.79</td>
<td>0.87</td>
</tr>
<tr>
<td>Dec</td>
<td>9.79</td>
<td>11.34</td>
<td>1.16</td>
</tr>
<tr>
<td>Annual</td>
<td>15.75</td>
<td>17.98</td>
<td>4.09</td>
</tr>
</tbody>
</table>

Figure 4. Monthly mean wind speed (Km/h)

Figure 5. Monthly standard deviation (Km/h)

Figure 6. Hourly max wind speed (Km/h)
Figure 7. Monthly Peak speed (Km/h)

WIND POWER DENSITY AT JAMGODRANI HILLS AT DIFFERENT ALTITUDE

Table 5. Wind Power density at 25 m hub height $\rho=1.1566\text{kg/m}^3$

<table>
<thead>
<tr>
<th>Month</th>
<th>Velocity m/s</th>
<th>Power density in W/m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>3.86022</td>
<td>32.946878</td>
</tr>
<tr>
<td>Feb</td>
<td>4.52155</td>
<td>52.936109</td>
</tr>
<tr>
<td>Mar</td>
<td>5.0984</td>
<td>75.950101</td>
</tr>
<tr>
<td>Apr</td>
<td>5.9316</td>
<td>119.91294</td>
</tr>
<tr>
<td>May</td>
<td>7.1348</td>
<td>210.03845</td>
</tr>
<tr>
<td>Jun</td>
<td>7.2223</td>
<td>217.85569</td>
</tr>
<tr>
<td>Jul</td>
<td>7.1552</td>
<td>211.84545</td>
</tr>
<tr>
<td>Aug</td>
<td>6.3307</td>
<td>140.73272</td>
</tr>
<tr>
<td>Sep</td>
<td>5.314</td>
<td>86.01205</td>
</tr>
<tr>
<td>Oct</td>
<td>3.837</td>
<td>32.363251</td>
</tr>
<tr>
<td>Nov</td>
<td>3.726</td>
<td>31.336291</td>
</tr>
<tr>
<td>Dec</td>
<td>3.3034</td>
<td>20.662648</td>
</tr>
</tbody>
</table>

Figure 8. Wind Power density in W/m2 versus month at 25 m height

Table 6. Power density output at 80 m hub height density=1.151 kg/m3

<table>
<thead>
<tr>
<th>Month</th>
<th>Velocity m/s</th>
<th>Power density in W/m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>4.928401</td>
<td>68.891174</td>
</tr>
<tr>
<td>Feb</td>
<td>5.772533</td>
<td>110.69923</td>
</tr>
<tr>
<td>Mar</td>
<td>6.508537</td>
<td>158.67026</td>
</tr>
<tr>
<td>Apr</td>
<td>7.57261</td>
<td>249.9091</td>
</tr>
<tr>
<td>May</td>
<td>9.108512</td>
<td>434.89822</td>
</tr>
<tr>
<td>Jun</td>
<td>9.220325</td>
<td>451.11173</td>
</tr>
<tr>
<td>Jul</td>
<td>9.13493</td>
<td>438.69327</td>
</tr>
</tbody>
</table>
Figure 9. Wind Power density in W/m² versus month at 80m height

Figure (8 & 9); Shows that wind power density, increases with altitude. It is maximum in June and minimum in December. In May, June and July wind speed is very high. The season from April to September wind speed is comparatively high so this is called high wind season. The season from October to March when wind speed is low, so that is called low wind season.

MONITORING POWER OUTPUT BY 225 KW NEPC WIND TURBINE INSTALLED AT JAMGODRANI HILLS

Table 7. Specifications of M.P. Wind Farms 225kW NEPC Wind Turbines Installed In Jamgodrani Hills

<table>
<thead>
<tr>
<th>TECHNICAL SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Power</td>
</tr>
<tr>
<td>225 kW</td>
</tr>
</tbody>
</table>

SPECIAL FEATURES

- Type: 3 blade upwind horizontal
- Braking System: Hydraulic Brake
- Control: Microprocessor Control
- Gear Type: Helical Gear
- Coupling between Generator and Turbine: Flexible Coupling
- Generator: Permanent Magnet Alternator
- Output: 415 VAC Nominal
- Power regulation: Stall Regulated
- Frequency: 50 Hz
- Cooling system: Air cooled

Source: M.P. wind farm Jamgodrani hills

The identified power output control limits were obtained 10 turbine 225KW NEPC monthly data. Figure 10 (a-b)represents the X-Chart and R-Chart is obtained from monthly power curve. It can be seen that the identified control limits are well established.
Next the monthly X-Chart and R-Chart is analysed on individual wind turbine. In the average power generation September month is poorly performed. However, other turbines were also poorly performed in the month of September.

For X-Chart: Average = 21.60, UCL = 29.28, LCL = 13.91, A2 = 0.308, Sub group = 10

For the R-Chart: Average = 25.04, UCL = 44.496, LCL = 5.58, D4 = 1.777, D3 = 0.223, Sub group = 10

![Figure 10. Establish control chart on testing data; (a) X-Chart](image)

![Figure 10. Establish control chart on testing data (b) R-Chart](image)

Based on monthly production data namely capacity factor and effective capacity of wind turbines are observed. While capacity factor mainly depends upon total production output, the effective capacity represents the total energy produce by the wind turbine when it was operational.

\[
CF = \frac{\text{Production (KWh)}}{\text{no. of days} \times \text{no. of hours/day} \times \text{rated capacity (KWh)}}
\]

\[
EC = \frac{\text{Production (KWh)}}{\text{Operation period (hr) \times rated capacity (KWh)}}
\]

Figure (11 & 12) result shows that effective capacity and capacity factor almost similar when in case when all the turbines were found to be within the specified control limit. Whereas, capacity factor and effective capacity for the case with one turbine faults has the lower value for one out of control wind turbine.
The result obtained by analysing the production data validates the applicability for X-Chart and R-Chart in performance monitoring and evaluation of overall wind farm.

In above three performance curves, power density, wind velocity curves were used. The X-bar Chart, together with the R-Chart, is a sensitive control chart for identifying assignable causes of power and process variation, and used for continuous monitoring of the data point in time. Finally capacity factor will be investigated.

CONCLUSION & FUTURE SCOPE

This research conducted in the dissertation was divided in two parts: Monitoring the performance of overall wind farm. Within the first part, wind velocity monthly, hourly, standard deviation, peak speed, power density of farm has been validated on the testing instances. Annul average wind speed at 30m height is 5.43 m/s and at 75 m height Annul average wind speed is 6.586m/s. Mean yearly wind power density at 30m height is 92.72 kW/ m2 and at 75 m height mean yearly wind power density is 164.52kW/m2. Second part of the paper focused on the monitoring of the overall wind farm using X-bar Chart, together with the R-Chart. Monitoring of overall wind farm based on the operational data only. Also the relationship between the underperforming wind turbines with their capacity factor will be investigated.

A further study can be carried out to increase output power through installing more efficient turbine, increasing hub height, using higher value of swept area, fluctuating power future challenge. Life cycle analysis tool can be applied to precisely estimate the actual economic benefit from installed wind turbine. Condition monitoring instrument like strain analyzer, vibration analyzer can be mounted on tower to ensure reliability that will give the information before breakdown.

REFERENCES

