PROCESSING, DIELECTRIC, IMPEDANCE SPECTROSCOPY OF ELECTRONIC MATERIAL: (Pb0.92Ga0.08)(Zr0.48Ti0.52)0.98O3

Main Article Content

Sugato Hajra
Sushrisangita Sahoo
Pravat Kumar Rout
RNP Choudhary

Keywords

Electronic Material, Solid State Reaction, XRD, Modulus, CONDUCTIVITY

Abstract

Purpose of Study: The present work shows studies of some physical properties of a gallium (Ga) modified lead zirconate titanate (PbZrTi)O3 with molar ratio Zr/Ti::48/52 (i.e., near morphotropic phase boundary (MPB)) having (Pb0.92Ga0.08)(Zr0.48Ti0.52)0.98O3 (PGaZT-8) as a chemical composition.


Methodology: The material was fabricated employing high-temperature mixed oxide route.


Main Finding: X-ray diffraction spectra suggest a distorted perovskite structure having two phases (tetragonal and monoclinic phases) with the substitution of small amount (2 and 4 wt %) of Ga in Pb(ZrTi)O3 (PZT). However, with higher concentration of Ga (6 and 8 wt %) in PZT, the multiphase perovskite structure is converted into an orthorhombic system with few impurity phase of Ti3O5. Analysis of field emission scanning electron micrograph (FESEM) of 8 wt% Ga modified PZT (PGaZT-8) shows the uniform distribution but different dimension and shape of grains depicting high-density ceramic sample. In the dielectric studies no dielectric anomaly exists in the experimental temperature range (25-500oC) in PGaZT-8, which determines the substitution of 8 wt% Ga in PZT (in MPB region) is found responsible for the suppression or shift (towards higher temperature) of known ferroelectric phase transition of PZT. There is an enhancement of permittivity, loss factor and conductivity as Pb site of PZT is doped with Ga.


Applications of study: This study is useful for the determination of the characteristics of the prepared material as a base for device fabrication.


Novelty of the Study: It is a systematic study of correlation of structural properties with the physical properties. It helps to understand the relaxation and conduction mechanism of PGaZT-8 using impedance and modulus spectroscopy.

Downloads

Download data is not yet available.
Abstract 59 | PDF Downloads 18

References

Muralt P., (2000) PZT thin films for microsensors and actuators: Where do we stand? IEEE Trans. Ultrason., Ferroelect., Freq. Control 47, 903–915, https://doi.org/10.1109/58.852073

Muralt P., (2000) Ferroelectric thin films for micro-sensors and actuators: a review. Journal of micromechanics and micro engineering 10, 136, https://doi.org/10.1088/0960-1317/10/2/307

Scott J.F., Dearaujo C.A.P., (1989) Ferroelectric Memories. Science 246, 1400-1405, https://doi.org/10.1126/science.246.4936.1400

Panigrahi S.C., Das P R, Parida B.N, Sharma H B K, Choudhary R N P, (2013) Effect of Gd-substitution on dielectric and transport properties of lead zincronate titanate ceramics. J mater Sci: Mater Electron 24, 3275-3283, https://doi.org/10.1007/s10854-013-1243-x

Arlt G., Dederichs H., Herbiet R., (1987) 90°-domain wall re-laxation in tetragonally distorted ferroelectric ceramics. Ferroelectrics 74, 37-53, https://doi.org/10.1080/00150198708014493

Chamola A., Singh H, Naithani U.C., Sharma S et al. (2011) Structural, dielectric and electrical properties of Lead zirconate titanate and CaCu3Ti4O12 ceramic composite. Adv. Mat. Letters 2, 26-31, https://doi.org/10.5185/amlett.2010.12182

Sen S., Choudhary R.N.P, Pramanik P., (2007) Structural and electrical properties of Ca2+-modified PZT electroceramics. Physica B 387, 56-62, https://doi.org/10.1016/j.physb.2006.03.028

Panigrahi S. C., Das P R., Parida B. N., Padhee R., Choudhary R. N .P., (2014) Dielectric and electrical properties of gadolinium-modified lead-zirconate-titanate system. Journal of Alloys and Compounds 604, 73–82 , https://doi.org/10.1016/j.jallcom.2014.03.078

Buixaderas E., Nuzhnyy D., Vaněk P., Gregora I., Petzelt J. et al. (2010) Lattice dynamics and dielectric response of undoped, soft and hard PbZr0.42Ti0.58O3, Phase Transit. 83, 917 , https://doi.org/10.1080/01411594.2010.509601

Solanki R S., Mishra S K, Senyshyn A, Yoon S, Baik S, Shin N, Pandey D. (2013) Confirmation of the monoclinic Cc space group for the ground state phase of Pb(Zr0.525Ti0.475)O3: A combined synchrotron X-ray and neutron powder diffraction study . Applied Physics Letter 102, 052903, https://doi.org/10.1063/1.4790569

Zhang N, Yokota H, Glazer AM, Ren Z, Keen DA, Keeble DS, Thomas PA, Ye ZG. (2014) The missing boundary in the phase diagram of PbZr(1-x)TixO₃ Nature communications 5, 5231

Mabud S.A. (1980) The morphotropic phase boundary in PZT solid solutions. J Appl Crystallogr 13, 211-216 , https://doi.org/10.1107/S0021889880011958

Cullity B.D., (1978) “Elements of x-ray diffraction”, Addison-Wesley Pub: Reading, Mass ,

Sharma P, Hajra S, Sahoo S, Rout P K, Choudhary R N P (2017) Structural and electrical characteristics of gallium modified PZT ceramics. Processing and Application of Ceramics 11, 171-176 , https://doi.org/10.2298/PAC1703171S

Hajra S, Sharma P, Sahoo S, Rout P K, Choudhary R N P. (2017) Processing and electrical properties of gallium-substituted lead zirconate titanate ceramics . Applied Physics A, 123:786, https://doi.org/10.1007/s00339-017-1411-6

Sharma P, Hajra S, Sahoo S, Rout P K, Choudhary R N P., (2017) Capacitive and resistive characteristics of gallium modified lead zirconate titanate. J material SCI: Mater electron 28, 12048-12055, https://doi.org/10.1007/s10854-017-7016-1

Hardtl K.H., Hennings D., Distribution of A-Site and B-Site Vacancies in (Pb, La)(Ti, Zr)03 Ceramics. (1972) J. Am. Ceram. Soc. 55, 230-231, https://doi.org/10.1111/j.1151-2916.1972.tb11267.x

Jaffee B., WR Cook Jr. , Jaffe H. (1971) Piezoelectric ceramics, Academic Press, New York

Joseph J., Vimala T.M., Sivasubramanian V, Murthy V R K (2000) Structural investigations on Pb(ZrxT1−x)O3 solid solutions using the X-ray Rietveld method. Journal of Materials Science 35, 1571-1575 , https://doi.org/10.1023/A:1004778223721

Asbrink S., Magneli A., (1957) Note on the Crystal Structure of Trititanium Pentoxide. Acta Chem. Scand., 11, 1606, https://doi.org/10.3891/acta.chem.scand.11-1606

Frantti J., Lappalainen J., Lantto V., Rundlof H., Nishio S., Eriksson S., Ivanov S., Kakihana M. (2000) Neutron diffraction studies of Pb(ZrxTi1-x)O-3 ceramics. Jpn. J. Appl. Phys. 39, 5697-5703 , https://doi.org/10.1143/JJAP.39.5697

Sahu M., Choudhary R.N.P., Das S., Otta S., Roul, B.K. (2017) Inter-grain mediated intrinsic and extrinsic barrier layer network mechanism involved in Ca1Cu3Ti4O12 bulk ceramic. J. Mat. Science: Materials in Electronics 28 15676–15684 , https://doi.org/10.1007/s10854-017-7457-6

Sun L., Wang Z., Shi Y., Cao E. et al (2015) Sol–gel synthesized pure CaCu3Ti4O12 with very low dielectric loss and high dielectric constant. Ceram. Int. 41, 13486-13492 , https://doi.org/10.1016/j.ceramint.2015.07.140

Maity S., Bhattacharya D, Ray S K (2011) Structural and impedance spectroscopy of pseudo-co-ablated (SrBi2Ta2O9)(1−x )–(La0.67Sr0.33MnO3)x composites. J. Phys. D: Appl. Phys. 44, 095403 , https://doi.org/10.1088/0022-3727/44/9/095403

Sahu N., Panigrahi S. (2013) Rietveld analysis, dielectric and impedance behaviour of Mn3+/Fe3+ ion modified Pb (Zr0•65Ti0•35)O3 perovskite. Bull. Mater. Sci. 36, 699–708 , https://doi.org/10.1007/s12034-013-0522-8

Chandran A., Samuel M. S, Koshy J., George K.C. (2011) Dielectric relaxation behavior of CdS nanoparticles and nanowires J. Mater. Sci. 46, 4646–4653 , https://doi.org/10.1007/s10853-011-5368-0

Barick B.K., Choudhary R.N.P., Pradhan D K. (2012) Phase transition and electrical properties of lanthanum-modified sodium bismuth titanate. Materials Chemistry and Physics 132, 1007– 1014 , https://doi.org/10.1016/j.matchemphys.2011.12.050

Acharya T., Choudhary R N P. (2015) Development of Ilmenite-type Electronic Material CdTiO3 for Devices. IEEE Transactions on Dielectrics and Electrical Insulation 22, 3521 , https://doi.org/10.1109/TDEI.2015.005196

Chaisan W., Yimnirun R., Ananta S., Cann. D.P. (2005) Dielectric properties of solid solutions in the lead zirconate titanate–barium titanate system prepared by a modified mixed-oxide method. Mater. Lett. 59, 3732-3737, https://doi.org/10.1016/j.matlet.2005.06.045

Behera C., Das P R., Choudhary R.N.P. (2014) Structural and Electrical Properties of Mechanothermally Synthesized NiFe2O4 Nanoceramics. Journal of Electronic Materials 43, 3539 , https://doi.org/10.1007/s11664-014-3216-0

Pattanayak S, Choudhary R.N.P., Das P.R. (2014) Effect of Praseodymium on Electrical Properties of BiFeO3 Multiferroic. Journal of Electronic Materials 43, 470-478, https://doi.org/10.1007/s11664-013-2847-x

Garbarz-Glos B, Bąk W, Antonova M, Pawlik M (2013) Structural, microstructural and impedance spectroscopy study of functional ferroelectric ceramic materials based on barium titanate. Materials Science and Engineering 49, 012031

Mishra R K, Choudhary R N P, Banerjee A (2010) Bulk permittivity, low frequency relaxation and the magnetic properties of Pb(Fe1/2Nb1/2)O3 ceramics. J. Phys.: Condens. Matter 22, 025901 , https://doi.org/10.1088/0953-8984/22/2/025901

Xia J, Zhao Qing, Gao Bo et al. (2014) Sintering temperature and impedance analysis of Mn0.9Co1.2Ni0.27Mg0.15Al0.03Fe0.45O4 NTC ceramic prepared by W/O microemulsion method. Journal of Alloys and Compounds 617, 228–234 , https://doi.org/10.1016/j.jallcom.2014.07.149

Purohit V, Padhee R, Choudhary R.N.P. (2018) Dielectric and impedance spectroscopy of Bi(Ca0.5Ti0.5)O3 ceramic Ceramics International, 44, 3993-3999 , https://doi.org/10.1016/j.ceramint.2017.11.194

Kumar A., Choudhary R. N. P. (2007) Characterization of electrical behaviour of Si modified BaSnO3 electroceramics using impedance analysis. J of material SCI: Mater electron, 42, 2476–2485

Sutar B. C., Das P R., Choudhary R. N. P. (2014) Synthesis and electrical properties of Sr(Bi0.5V0.5)O3 electroceramic, Adv. Mat. Letters 5, 131-137 , https://doi.org/10.5185/amlett.2013.fdm.51

MacDonald J. R. (1984) Note on the parameterization of the constant-phase admittance element. Solid State Ionics 13, 147-149 https://doi.org/10.1016/0167-2738(84)90049-3