Main Article Content


Purpose: The chemistry society has activated to expand new chemistry that is less destructive to the environment and human health. This approach has extensive interest and designated as green chemistry, environmentally friendly chemistry, clean chemistry, and atom economy.

Methodology: There is advancement toward involved chemistry with the facts and do not prevent the properties of the target compound or the efficacy of particular solvents or reagents. The use of chemistry in a way that maximizes benefits while reducing adverse effects has come to be green chemistry.

Main findings: Reduce the use and formation of harmful products or by-products. Presently maximum pollution to the environment is caused by some chemical industries. So, need to design and develop synthetic methods in such a way that the waste products are lowest and have no effect on the environment and their handy disposal.

Applications of the work: Green chemistry plays a vital role in pharmaceuticals for developing new drugs which are less toxic, more effective with low side effects.

The novelty of the work: The industries performing manufacturing using green synthesis methods to carrying out their productions have positive impacts on environmental sustainability. This review is looking ahead at longer-term challenges and prospects in research, industrial applications, and education.


green synthesis pharmaceutical chemistry sustainability atom economy

Article Details

How to Cite


  1. Acharya, P.S.G., Vadher, J.A., Acharya, G.D. (2014). A Review on Evaluating Green Manufacturing for Sustainable Development in Foundry Industries. Int. J. Emerg. Technol., 4(1), 232–237.
  2. Adam, D.H., Supriadi, Y.N., Ende, Siregar, Z.M.E. (2020). Green Manufacturing, Green Chemistry And Environmental Sustainability: A Review. Int. J. Sci. & Tech. Res., 9(04), 2209-2211.
  3. Al-Hakkani, M.F., Gouda, G.A., Hassan, S.H.A. (2021). A review of green methods for phyto-fabrication of hematite (α-Fe2O3) nanoparticles and their characterization, properties, and applications. Heliyon, 7(1), e05806., PMid:33490660 PMCid:PMC7809383 DOI:
  4. Anastas, P.T., Lauren, B.B., Mary, M.K., Tracy, C.W. (2000). The Role of Catalysis in the design, development, and implementation of Green Chemistry. Catalysis Today, 55, 11-22. DOI:
  5. Anastas, P.T., Warner, J.C. (1998). Green Chemistry, Theory and Practice. Oxford, UK: Oxford University Press.
  6. Arora, G., Shrivastava, R., Kumar, P., Bandichhor, R., Krishnamurthy, D., Sharma, R.K., Matharu, A.S., Pandey, J., Rizwan, M. (2021). Recent advances made in the synthesis of small drug molecules for clinical applications: An insight. Curr. Res. Green & Sustainable Chem., 4, 100097., PMCid:PMC8056884 DOI:
  7. Banik, B.K., Sahoo, B.M., Varaha, B.V., Kumar, R., Panda, K.C., Jena, J., Mahapatra, M.K., Borah, P. (2021). Green Synthetic Approach: An Efficient Eco-Friendly Tool for Synthesis of Biologically Active Oxadiazole Derivatives. Molecules, 26(4), 1163. DOI:
  8. PMid:33671751 PMCid:PMC7927091
  9. Castilla, I.A., Woods, D.F., Reen, F.J., O’Gara, F. (2018). Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies. Mar. Drugs., 16(7), 227., PMid:29973493 PMCid:PMC6071119 DOI:
  10. Cerminara, I., Chiummiento, L., Funicello, M., Lupattelli, P., Scafato, P., Scorza, F., Superchi, S. (2020). Green Chemistry, Circular Economy and Sustainable Development: An Operational Perspective to Scale Research Results in SMEs Practices. Computational Science and Its Applications–ICCSA 2020. 12255, 206–213., PMCid:PMC7974230 DOI:
  11. Chen, M., Jeronen, E., Wang, A. (2020). What Lies Behind Teaching and Learning Green Chemistry to Promote Sustainability Education? A Literature Review. Int. J. Environ. Res. Public Health., 17(21), 7876., PMid:33121097 PMCid:PMC7663151 DOI:
  12. Cichosz, S., Masek, A. (2020). Superiority of Cellulose Non-Solvent Chemical Modification over Solvent-Involving Treatment: Solution for Green Chemistry (Part-I). Materials, 13(11): 2552., PMid:32503319 PMCid:PMC7321458 DOI:
  13. Crawford, S.E., Hartung, T., Hollert, H., Mathes, B., van Ravenzwaay, B., Steger-Hartmann, T., Studer, C., Krug, H.F. (2017). Green Toxicology: a strategy for sustainable chemical and material development. Environ. Sci. Eur., 29(1), 16., PMid:28435767 PMCid:PMC5380705 DOI:
  14. Crua, A.V., Medina, D., Zhang, B., González, M.U., Huttel, Y., García-Martín, J.M., Cholula-Díaz, J.L., Webster, T.J. (2019). Comparison of cytocompatibility and anticancer properties of traditional and green chemistry-synthesized tellurium nanowires. Int. J. Nanomed., 14, 3155–3176., PMid:31118629 PMCid:PMC6501707 DOI:
  15. de Marco, B.A., Rechelo, B.S, Tótoli, E.G., Kogawa, A.C., Salgado, H.R.N. (2019). Evolution of green chemistry and its multi dimensional impacts: A review. Saudi Pharm. J., 27(1), 1–8., PMid:30627046 PMCid:PMC6323129
  16. de Marco, B.A., Rechelo, B.S., Tótoli, E.G., Kogawa, A.C., Salgado, H.R.N. (2019). Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm. J., 27(1), 1–8., PMid:30627046 PMCid:PMC6323129 DOI:
  17. Deif, A.M. (2011). A system model for green manufacturing. J. Clean. Prod., 19(14), 1553–1559. DOI:
  18. Dornfeld, D.A. (2013). Green Manufacturing: Fundamentals and Applications. Springer Science & Business Media.
  19. Draye, M., Chatel, G., Duwald, R. (2020). Ultrasound for Drug Synthesis: A Green Approach. Pharmaceuticals, 13(2), 23., PMid:32024033 PMCid:PMC7168956 DOI:
  20. Dwivedi, K.D., Borah, B., Chowhan, L.R. (2019). Ligand Free One-Pot Synthesis of Pyrano[2,3-c]pyrazoles in Water Extract of Banana Peel (WEB): A Green Chemistry Approach. Front. Chem., 7, 944., PMid:32039156 PMCid:PMC6987396 DOI:
  21. Escobedo, R., Miranda, R., Martínez, J. (2016). Infrared Irradiation: Toward Green Chemistry, a Review. Int. J. Mol. Sci., 17(4), 453., PMid:27023535 PMCid:PMC4848909 DOI:
  22. Fanelli, F., Parisi, G., Degennaro, L., Luisi, R. (2017). Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis. Beilstein J. Org. Chem., 13, 520–542., PMid:28405232 PMCid:PMC5372749 DOI:
  23. Gao, X., Liu, J., Zuo, X., Feng, X., Gao, Y. (2020). Recent advances in synthesis of benzothiazole compounds related to green chemistry. Molecules, 25(7), 1675., PMid:32260500 PMCid:PMC7181030 DOI:
  24. Geyer, R., Jackson, T. (2004). Supply loops and their constraints: the industrial ecology of recycling and reuse. Calif. Manage. Rev., 46(2), 55–73. DOI:
  25. chemistry.
  26. Ingrid, M., David, S., Marilyn, G., Joaudimir, C., Johanna, F. (2006). A Greener Approach to Aspirin Synthesis using Microwave Irradiation. J. Chem. Edu., 83, 628. DOI:
  27. Ivankovic, A., Talic, S. (2017). Review of 12 Principles of Green Chemistry in Practice. Int. J Suit. & Greenener, 6(3), 39-48. DOI:
  28. Jahangirian, H, Lemraski, E.G., Rafiee-Moghaddam, R., Webster, T.J. (2018). A review of using green chemistry methods for biomaterials in tissue engineering. Int. J. Nanomed., 13, 5953–5969., PMid:30323585 PMCid:PMC6177385 DOI:
  29. Jahangirian, H., Lemraski, E.G., Webster, T.J., Rafiee-Moghaddam, R., Abdollahi, Y. (2017). A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int. J. Nanomed., 12, 2957–2978., PMid:28442906 PMCid:PMC5396976 DOI:
  30. Jaiswal, S., Kapoor, D., Kumar, A., Sharma. K. (2017). Applications of green chemistry. Int. J. Cybernetics & Informatics, 6(1/2). doi: 10.5121/ijci.2017.6215 127.
  31. Kharissova, Q.V., Kharisov, B.I., González, C.M.O., Méndez, Y.P., López, I. (2019). Greener synthesis of chemical compounds and materials. R. Soc. Open. Sci., 6(11): 191378., PMid:31827868 PMCid:PMC6894553 DOI:
  32. Kim, S., Hong, S., Ahn, K., Gong, S. (2015). Priority survey between indicators and analytic hierarchy process analysis for green chemistry technology assessment. Environ. Health Toxicol., 30 Suppl, s2015003., PMid:26206364 PMCid:PMC4540126 DOI:
  33. Lasker, G.A., Mellor, K.E., Simcox, N.J. (2019). Green chemistry & chemical stewardship certificate program: a novel, interdisciplinary approach to green chemistry and environmental health education. Green Chem. Lett. Rev., 12(2), 178–186. DOI:
  34. PMid:33014124 PMCid:PMC7529328
  35. Lee, W.J., Goh, P.S., Lau, W.J., Ismail, A.F., Hilal, N. (2021). Green Approaches for Sustainable Development of Liquid Separation Membrane. Membranes, 11(4), 235., PMid:33806115 PMCid:PMC8064480 DOI:
  36. Manmohan, S., Arjun, S., Khan, S.P., Eram, S., Sachan, N.K. (2012). Green chemistry potential for past, present and future perspectives. Int. J. Res. Pharm., 3(4), 31-36.
  37. Nukman, Y., Farooqi, A., Al-Sultan, O., Alnasser, A.R.A., Bhuiyan, M.S.H. (2017). A Strategic Development of Green Manufacturing Index (GMI) Topology Concerning the Environmental Impacts. Procedia Eng., 184, 370–380. DOI:
  38. O’Brien, K.P. Myers, J.P. Warner, J. (2009).Green Chemistry: Terminology and Principles. Environ Health Perspect., 117(10), A434., PMid:19750079 PMCid:PMC2737033 DOI:
  39. Pang R., Zhang, X. (2019). Achieving environmental sustainability in manufacture: A 28-year bibliometric cartography of green manufacturing research. J. Clean. Prod., 233, 84–99. DOI:
  40. Patel, M., Patel, H., Mevada, S., Patel, O. (2020). Chemistry goes green: a review on current and future perspectives of pharmaceutical green chemistry. World J. Pharm. & Med. Res., 6(7), 125-131.
  41. Paul, I.D., Bhole, G.P., Chaudhari, J.R. (2014). A Review on Green Manufacturing: It’s Important, Methodology and its Application. Procedia Mater. Sci., 6, 1644–1649. DOI:
  42. Ragazzi, M., Ghidini, F. (2017). Environmental sustainability of universities: Critical analysis of a green ranking. Energy Procedia, 119, 111–120. DOI:
  43. Rusinko, C.A. (2007). Green Manufacturing : An Evaluation of Environmentally Sustainable Manufacturing Practices and TheirImpact on Competitive Outcomes. Ieee Trans. Enginering Manag., 54(3), 445–454. DOI:
  44. Saini, R.R.S., Singh, U.U.R. (2002). Green chemistry: Environment, economics, and competitiveness. Corp. Environ. Strateg., 9(3), 259–266. DOI:
  45. Santi, M., Sancineto, L., Nascimento, V., Azeredo, J.B., Orozco, E.V.M., Andrade, L.H., Gröger, H., Santi, C. (2021). Flow Biocatalysis: A Challenging Alternative for the Synthesis of APIs and Natural Compounds. Int. J. Mol. Sci., 22(3), 990., PMid:33498198 PMCid:PMC7863935 DOI:
  46. Schulte, P.A., McKernan, L.T., Heidel, D.S., Okun, A.H., Dotson, G.S., Lentz, T.J., Geraci, C.L., Heckel, P.E., Branche, C.M. (2013). Occupational safety and health, green chemistry, and sustainability: a review of areas of convergence. Environ. Health., 12, 31., PMid:23587312 PMCid:PMC3639149 DOI:
  47. Sezen, B., Çankaya, S.Y. (2013). Effects of Green Manufacturing and Eco-innovation on Sustainability Performance. Procedia -Soc. Behav. Sci., 99, 154–163. DOI:
  48. Shah, M., Fawcett, D., Sharma, S, Tripathy, S.K., Poinern, G.E.J. (2015). Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials, 8(11), 7278–7308. DOI:
  49. PMid:28793638 PMCid:PMC5458933
  50. Shanghi, R. (2003). The Need For Green Chemistry” :Environt Friendly Alternative. New Delhi: Naroso Publishing House.
  51. Sharma, S.K. Mudhoo, A., Zhang, W. (2011). Chemistry and Engineering, in Green Chemistry for Environmental Sustainability, CRC Press. DOI:
  52. Sindhu, R.K., Verma, A., Sharma, D., Gupta, S. (2017). Applications of green chemistry in pharmaceutical chemistry and day today life. Arch. Med. Pharm. Sci. Res., 1(2), 39-44.
  53. Singh, G., Wakode, S. (2018). Green Chemistry Drift: A Review. Sch. Acad. J. Pharm., 7(6), 274-279. DOI: 10.21276/sajp.2018.7.6.10
  54. Singh, G., Wakode, S. (2018). Green Chemistry Drift: A Review. Sch. Acad. J. Pharm., 7(6), 274-279. doi: 10.21276/sajp.2018.7.6.10
  55. Smita, T., Falfuni, M. (2012). Green chemistry: A tool in pharmaceutical chemistry, NHL. J. Med Sci., 1(1), 7-13.
  56. Tobiszewski, M., Marć, M., Gałuszka, A., Namieśnik, J. (2015). Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules, 20(6), 10928–10946., PMid:26076112 PMCid:PMC6272361 DOI:
  57. Tucker, J.L. (2006).Green Chemistry, a Pharmaceutical Perspective. Org. Process Res. Develop., 10(2), 315-319. DOI:
  58. Ubuoh, E. (2016). Green Chemistry : A Panacea for Environmental Sustainability Agriculture in Global Perspective. Glob. J. Pure Appl. Chem. Res., 4(1), 21–29.
  59. Valavanidis, A., Vlachogianni, T., Fiotakis, K. (2009). Laboratory Experiments of Organic Synthesis and Decomposition of Hazardous Environmental Chemicals Following Green Chemistry Principles. International Conference “Green Chemistry and Sustainable development”, Thessaloniki.
  60. Wilson, M. P., Schwarzman, M.R. (2009). Toward a New U.S. Chemicals Policy: Rebuilding the Foundation to Advance New Science, Green Chemistry, and Environmental Health. Environ. Health Perspect., 117(8), 1202–1209., PMid:19672398 PMCid:PMC2721862 DOI:
  61. Wojnarowicz, J., Chudoba, T., Lojkowski, W. (2020). A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphologies. Nanomat.,10(6), 1086., PMid:32486522 PMCid:PMC7353225 DOI:
  62. Wolfson, A., Dlugy, C., Shotland, Y. (2007). Glycerol as a green solvent for high product yields and selectivities. Environ. Chem. Lett., 5, 67-71. DOI:
  63. Yogesh, S.S., Ravikumar, V.T., Anthony, N.S., Douglas, L.C. (2001). Applications of green chemistry in the manufacture of oligonucleotide drugs. Pure. Appl. Chem., 73, 175–180. DOI: